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FOREWORD

The research described in this report, A Survey of Techniques for
the Analysis of Sampled-Data Systems with a Variable Sampling Rate, by

George A. Bekey, was carried out under the technical direction of
C. T. Leondes and G. Estrin and is part of the continuing program in
Control Systems Theory.

This project is conducted under the sponsorship of Aeronautical
Systems Division, Flight Control Laboratory, Project Engineer
Charles Harmon, Wright-Patterson Air Force Base. Submitted in partial
fulfillment of Contract Number AF 33(616)-7139, Project Number 8225.
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ABSTRACT

I

This report presents several techniques which can be used for the

analysis of sampled-data systems with a non-constant sampling period. It

is shown that the application of z-transform techniques is limited to cases

where the sampling pattern repeats periodically. Several special cases,

including the cyclically-varying sampling period and the "Skipped sample"

problem are outlined. The most general methods available are based on a

direct solution of the system difference equations. These equations, while

time consuming to solve, do make possible the evaluation of transient re-

sponse sample-by-sample. The advantages, limitations and possible exten-

sions of the various methods are outlined. The report includes a number of

simple examples and an extensive bibliography.

PUBLICATION REVIEW

This report has been reviewed and is approved.
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Technical Director
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ASD TDR 62-35 iii



TABLE OF CONTENTS

Page

1. INTRODUCTION. . . . . . . ................... 1

1.1. Classification .............. ................... 1

1.2. Methods of Analysis .............. ................ 2

2. ANALYSIS USING DIFFERENCE EQUATIONS WITH
TIME-VARYING COEFFICIENTS ................. 3

3. ANALYSIS USING MODIFIED z-TRANSFORMS ..... ........ 7

3.1. Modified z-Transforms from Switch Decomposition . . 10

4. SKIPPED-SAMPLE PROBLEMS: TRANSFER MATRIX
FORMULATION . . . . . . ..................... 12

4. 1. Skipped-Sample Problems: Inversion by Long Division . 16

5. STATE VARIABLE FORMULATION OF SAMPLING PROBLEMS 19

6. OTHER METHODS . . . . . . .......... . . . . . . 23

6. 1. Continuous Approximations ................ . . . . 23

6.2. Slowly-Varying Sampling Rate Systems ............. 24

7. SUMMARY AND CONCLUSION .............. ....... 24

REFERENCES . . . . . . .................... 27

ASD TDR 62-35 iv



LIST OF FIGURES

Figure Page

1 Error-Sampled System ............ ............... 3

2 Sampling Pattern in a Cyclic-Rate System ..... ..... 8

3 Error-Sampled System without a Hold Circuit ... ..... 8

4 Equivalent Diagram for Cyclic-Rate Sampler ...... ... 10

5 A Sampled Signal and the Zero-th Skip-Sampled
Component if N = 3 ........ ............... ..... 12

6 Skip-Sampled System and Sampling Pattern ......... ... 15

7 Representation of Skipped-Sample Problem ......... ... 17
10

8 Illustrative Problem from Kalman and Bertram . . . . 21

ASD TDR 62-35 v



1. INTRODUCTION

The analysis of sampled-data systems with a fixed sampling period has
16, 19

been treated in a large number of publications, primarily by use of the

z-transform method. Only a relatively small amount of attention has been

devoted to the larger class of sampling systems in which the sampling inter-

val is variable, depending either on time or on a system variable; the former

being linear and the latter non-linear. Sampled-data systems with a variable

sampling rate show promise of having two extremely interesting properties:

(1) The operation of a system at its minimum sampling rate, consis-

tent with required performance and stability criteria, leads to a

class of adaptive systems in which the energy or control effort is

minimized. Such control systems may be extremely important

for applications when available energy is severely limited, such

as satellite attitude control.

(2) The operation of a system which adjusts its sampling rate accord-

ing to performance requirements may closely resemble the behav-

ior of a human operator and therefore may lead to clues about

certain functions of the central nervous system.

The purpose of this paper is to review and summarize the major tech-

niques described in the literature for the analysis of sampled-data systems

with a non-constant sampling interval. A general and unified approach to this

problem seems to be lacking. Most of the available papers concerning vari-

able sampling assume either periodic variations in sampling rate or random

variations in sampling intervals. This report presents an outline of the major

methods presently available and discusses briefly their applicability and limi-

tations.

A recent article by Jury presents a brief discussion of various types of

sampling schemes. 22

1. 1 Classification

Sampled data systems with a non-constant sampling rate may be divided

Manuscript released by the author February 1, 1962 for
publication as an ASD Technical Documentary Re,;o-t.
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into three general types:

(1) Time-dependent sampling: The sampling intervals are given by

a known function of time. Nearly all the literature on variable-

sampling rate systems is concerned with this type of sampling.

Specific systems include: (a) Cyclic-rate systems (where the

sampling interval is a periodic function of time, i. e., a pattern

of sampling intervals repeats periodically); (b) Skip-sampled

systems (in which samples in an otherwise constant rate system

are occasionally missed); and (c) Piecewise-constant sampling

rate systems (where the sampling rate changes discontinuously

after a number of samples, remaining constant between changes).

(2) Nonlinear sampling: The sampling intervals are functions of de-

pendent variables or system performance. Clearly, this prob-

lem is considerably more difficult than that of time dependent sam-

pling, and very little information is available in the literature on

methods of handling such problems.

(3) Random sampling: In this type of system the sampling interval is

a random variable. The synthesis of optimum filters for such

systems with stationary random sampling has been treated in the

literature. 1,11,15

In the present report we shall concern ourselves exclusively with deter-

ministic sampling and omit any further discussion of random sampling. Further-

more, the report is concerned with constant pulse width systems, preferably

those which can be analyzed using the impulse approximation. A number of

extremely interesting papers have dealt with pulse-width modulation in sam-

pled-data systems but this problem will be considered as being outside the

scope of this discussion.

1. 2 Methods of Analysis

A number of methods have been proposed for the analysis of sampled-

data systems with variable sampling rate. In many cases, the methods are

ASD TDR 62-35 2



applicable only to the case of periodic, time dependent sampling rates. The

major techniques known to the author fall into the following classification:

(1) The solution of difference equations with variable coefficients in

the time domain.

(2) The use of z-transform and modified z-transforms.

(3) The use of matrix methods for formulation of the solution.

(4) The application of state-variable concepts for a general formula-

tion of the problem.

(5) Approximate solutions, using continuous system techniques to

approximate sampled data systems.

The five methods above will be examined in small detail in the following

paragraphs. While it is clear from the discussion which follows that there is

a great deal of overlap between these five methods, they are presented sepa-

rately for convenience and because they appear separately in the literature.

2. ANALYSIS USING DIFFERENCE EQUATIONS WITH TIME-VARYING
COEFFICIENTS

The time-domain behavior of a sampled-data system can be described

using difference equations, even if the sampling intervals are not of constant

length. Thus a q-th order system can be described by q 1-st order difference

equations or, by substitution, a single q-th order equation which expresses

the output at any sampling instant in terms of the input and output values at

the (q-1) past sampling instants.

Consider the error-sampled system of Figure 1, which includes a zero-

order hold and a linear "plant" described by its transfer function G(s).

re ) i x(t) Gc(-I ST

ERROR-SAMPLED SYSTEM

FIGURE 1
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The sampler is assumed to close af instants t 1 , t 2 , t3 A.... where the sampling

intervals

T n t n1tnn = n+l nt

are not necessarily equal. For the moment, the sampling instants will be

assumed known, and the removal of this restriction will be discussed later.

The output of the system during the interval

t<t<t
tn < _ tn+1

is then given by the relation 8

q-ld(P~c(t)1

c(t) = Xn g(t-tn) + fp(t-tn) d(P) (la)

p=O t = t
n

where t = time at the start of the (n+l) sampling interval of duration Tn n

x = output of zero-order hold = e(t )

c(t) = continuous system output

g(t) = step function response of system G(s)

q = order of the system

and the f (t) are time functions which result from the initial conditions at the
p

start of the n-th sampling interval.

Since the system is of order q, we need q first order equations to com-

pletely describe it. The additional equations can be obtained by successive

differentiations of Equation (la) to give:

(q-) [ 1)dc I =Xng(1) (t-t )+ f (1) t-tn(t

dt Itn<t_<tn+ n I p n dt(p)
-nI p=O t=t n

n (lb)

d~q~l~c f(q-l)(

dt(q- 1)n = Xng(q- l) (t-t) + f (q- 1)(t-t) d (P)c I
dt(-1)nnP n dt (P)

.t n-<t<t n+ 1 P= 0 t=t tn

(ic)

ASD TDR 62-35 4



if we define

d W c(t) C (i)
dtll) n

t =t
n

and let t=tn+1 , the q equations reduce to the following set of difference

equations:

q-1

C (RnCn) g (Tn) + j fp(Tn)C(P) (2a)

p=O

q-1
c (- ( g ( q- 1) (Tn + f (q- 1) ()C(p)(2qn+1= (Rn-Cn)g(q- (Tn)fn (2q)

p=o

where we have let X = R - C . Then the system is completely described byn n n

Equations (2a) to (2q).

The above equations can be replaced by an equivalent set which does not

require knowledge of the derivatives of the output at the sampling instants but

only the value of the output. The equations are written in the form:

q-1

Cn+ = (Rn-C )g(T) + fp(Tn) C (P)

p=o

q-1

Cn =(Rnl- C n)g(Tn_) + f (Tn (P)
fp T n- n-l (3b)p=0

q-1
C (R -C q )g(T )+ f (T )C(p)

n-q+l n-q n-q n-q I p n-q n-q (3q)

p=o

By substitution, the derivatives at the sampling instants, C. can be eliminated,

and an expression of the following form is obts.ined:

Cn+l = an(t)Rn +an-l (t)Rn-l +' +ann-q(t)Rn-q +bn(t)Cn + b +bn-qCn-q (4a)

ASD TDR 62-35 5



where the a. and b. are functions of the past samplig interval durations T..1 1 1

Example: Let G(s) in Figure 1 be

G(s) K
s(s+1)

The output during the nth sampling interval then satisfies the equation

c~)=KE n[ (t-tn) -1+e--n n + C +C [l-e-ttn (t n<t<t n+1~ _ I

(4b)

which corresponds to Equation (la). Differentiating once we obtain

d(t) = KE[ 1-e- (t-tn) + e- e-(t-tn) (4c)

Setting t = t in Equations (8) and (9) one obtains

C 1n+ m KE [T n- +e Tn+ C n+ C [-e -Tn (4d)

Cn+1 = KE [l-e-Tn +C eTn n (4e)

From (4d) and (4e) one can also write, correspondingly,

C = KEn n-1 [T n-l-+e-Tn-l]+Cn-l+Cn-1[l-e-Tn-l] (4f)

C KEn_I l-e + n-lI e-T (4g)

Terms containing C and C can be eliminated using Equations (4d), (4f) and
n n-i1'

(4g). Then substituting E = R - C n, we obtain:
n n n

n+l n-lT 1 -e(Tn+Tn-1)

+e-TnI] (- ien C 1  K(T1 +e-Tn)R +K(1-e Tn-1-T e TfK)
l-eTnl n-i

Il-e-R e6n- 1) Rn-i1 
(5)
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This is the desired equation, a difference equation with time varying coeffi-

cients, which yields the output at any sampling instant Rs a function of the

values of the input and output at the two previous sampling instants and of the

lengths of the two past sampling intervals. Two past samples are required

since this is a second order system.

It should be noted that no restriction has been made, in the development

of this equation, on the manner of obtaining the time intervals T . Jury andn

Mullin8 treat the case where the sampling pattern is periodic, repeating it-
self every k sample, i. e., Tn = T n+k. In this case, one obtains difference

equations with periodic coefficients which can be solved by means of z-trans-

forms. 14

Hufnagel6 considers the use of difference equations in the form here de-

veloped to perform a sample-by-sample transition between two regions where

the sampling is periodic but at different frequencies. Standard z-transform

techniques are used in the first region and the variable coefficient difference

equations are used to obtain required initial conditions to make possible the

use of z-transforms in the second region.

If the sampling period is signal-dependent, say on the magnitude of the

error at the preceding sampling instant, the equations can still be used to ob-

tain an exact transient solution to this nonlinear problem, proceeding sample-

by-sample in the time domain. While this procedure is clearly very laborious,

it can be easily mechanized for solution on a digital computer.

3. ANALYSIS USING MODIFIED z-TRANSFORMS

Modified z-transform techniques have been applied by several writers5,19

to the analysis of sampled-data systems with a cyclic variation in sampling

rate. It should be noted that in such systems the corresponding samples in each

cycle are separated by the same time interval, as illustrated in Figure 2.

Since a fundamental periodicity exists in cyclic-rate systems, it is not sur-

prising that z-transform techniques are applicable. Two approaches to the

problem will be illustrated below.

ASD TDR 62-35 7



III III III III
tit 2  t3  

t 3÷k ...... t3+2k ...... TIME

SAMPLING PATTERN IN A CYCLIC-RATE SYSTEM

FIGURE 2

Consider first the system of Figure 3 which does not include a hold cir-
cuit. Let the sampling times be t1 t2... tn and the cycle time T be as shown

in Figure 2, where there are n samples in each cycle pattern. Then, for a
1

system with a basic sampling frequency -1, the output can be obtained by re-

calling that the convolution summation for a linear sampled-data system can

be expressed in the form
00

c(rT) = g(kT) e (rT - kT) (6)

k=O

r(t) egl) c(t)_

ERROR-SAMPLED SYSTEM WITHOUT A HOLD CIRCUIT

FIGURE 3

Each of the samples in a cycle is delayed by t.. Therefore, its response at
1

time (rT) can be obtained by appropriately advancing the input function and de-

laying the weighting function g(t), so that
00

ci(rT) =I g(kT-t.) e(rT-kT+t.) (7)

k=O

ASD TDR 62-35 8
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Since there are n such samples in-a cycle, Equation (7) must be summed over

the i's. Finally, the output at time (rT+t jt) is given by the appropriate advance

in Equation (7), resulting in:
n 0o

c(rT+tj) = I I g(kT+t'-t')e(rT-kT+t i) (8)

i=l k=0

By defining the "advanced z-transform" in the form

Gji(z) = g(kT+t-ti) z-k (9)

k-0

the transform output becomes 5

n

C.(z) I Gji(z)Ei(z) (10)

k=1

where
C0

Ei(z) = I e(nT+t i)z-n (11)

n=0

This latter form is related to the usual form E(z, m) of the modified z-trans-
19

form by the relation

E.(z) = zE(z, m) if t. = mT (12)1 1

Similarly, the quantities G ji(z) are related to the modified z-transforms by the

relation

Gji(z) = zG(z, m), j > i (13)

In order to express the system output in terms of the input r(t) one can make

use of the expression

Ek(Z) = Rk(Z) - Ck(Z) (14)

Substituting (14) into (10) one obtains:

ASD TDR 62-35 9



n n

I ( 6jk+ Gjk~z)) G jG.(z)R .(z) (15)

k=1 1=1

where 6k is the Kronecker delta function, i.e., 6jk = 1 for j = k and 6jk = 0

for j d k.

Hufnagel6 suggests that Equation (15) can be solved conveniently by con-

sidering the G jk(z) to be components of a matrix and R k(z) and Ck(z) to be com-

ponents of vectors, so that Equation (15) can be written

[ I+ G(z)] IC (z)} = [ G(z) ]JR (z)} (16)

where I is the unit matrix. The outpu+ can be obtained by premultiplying by

{Cz} l [I+G~z)f 1 l [G~z] {R(z)} (17)

The outputs at the sampling instants, c(t), are obtained by evaluation of the in-

verse z-transform of the Ck(z) by conventional methods.

It should be noted that when hold circuits are present, the matrix ele-

ments Gjk(z) must be modified since the hold periods are of inequal length.

3. 1 Modified z-Transforms from Switch Decomposition

The result obtained above for cyclic rate sampled-data systems can also

be obtained in an easily visualized manner by following a procedure suggested
19

by Tou. The cyclic-rate sampler of Figure 3 can be redrawn as shown in

Figure 4 with n constant-rate samplers, for a system with n pulses per cycle.

EQUIVALENT DIAGRAM FOR CYCLIC-RATE SAMPLER

FIGURE 4

ASD TDR 62-35 10



Each of the equivalent samplers in Figure 4 is represented as preceded by a'

fictitious advance element and followed by a fictitious delay element, the ad-

vances and delays being equal to the respective time interval between samples.

If the elements preceding the sampler are denoted by Dk(s),

tks
Dk(S) = e

and the elements following the sampler by Gk(s),

- tksG(s

Gk(s) = e G(s)

then the output can be obtained by summing the individual responses,

k=n

C(s) = I Gk(Z)EDk(Z) (18)

k=0

Taking the z-transform of Equation (18) we obtain

n-1

C(z) = I Gk(Z)EDk(Z) (19)

k=0

The terms EDk(z) are obtained from the relation

E(s) = R(s) - C(s) (20)

by substituting C(s) from Equation (18), multiplying by D(s) and taking z-trans-

forms. As a result one obtains a matrix equation

[ GD(z) ]{JED(z)} ={RD(z)} (21)

where the elements of the column vectors LED(z)} and {RD(z)} are

EDk(Z) and RDk(z), respectively and the elements of the matrix

[GD(z) ] are of the form:

5jk + GjDk(z)

where

6jk = 1 for j = k and 6Jk = 0 for j - k.

The solution follows lines analogous to those presented in the previous

ASD TDR 62-35 11



section and produces the modified z-transform of the output, C(z, m).

It should be noted that the application of z-transforms is limited to cy-

clic variations in the sampling pattern, i. e., there must be a fundamental

periodicity in the sampling. The technique has been extended to the multiple
21 9

sampler case and to the systems with finite pulse width. If a multiple

sampler system is subjected to a random input, it can be shown20 that

"Tuning" of one of the samplers to operate at an appropriate cyclic variable

rate can reduce the mean-square error below that obtainable with constant

rate sampling.

4. SKIPPED-SAMPLE PROBLEMS: TRANSFER MATRIX FORMULATION

In some systems samples may be missed occasionally, in an otherwise

periodic constant sampling rate system. If the samples are missed at random,

the problem may be treated by considering the sampling frequency itself to
1

an appropriate random variable. If the samples are missed at regular inter-

vals, the problem reduces to that of a cyclic-rate system, which can be handled

by the methods introduced in previous sections. In this section we shall con-

sider an elegant solution to this problem, using a matrix approach to find the
"skip-sampled components" of a signal, as presented by Friedland.4

Consider the sampling pattern shown in Figure 5, which also shows one

skip-sampled component of the basic sampled signal. The signal is defined

only at the sampling instants nT. The component x.(nT) of x(t) is given by taking

every Nth sample beginning with the jth (as shown in Figure 5 for N = 3, j = 1).

X (nT)

o I 2 3 4 5 6 7 89 1011I12 -.. nT

0 3 6 9 12 -e-nT

A SAMPLED SIGNAL AND THE ZERO-th SKIP-SAMPLED
COMPONENT IF N = 3

FIGURE 5

ASD TDR 62-35 12



Thus,. the N skip sampled components are defined as

x(nT), n (j +kN) (=0,1,... N-1)
W0 , n Q (j+kN) k 0, 1.... (22)

Then the signal x(nT) is represented as

n-i

x(,rT) = x x (nT) L23)

j=0

The z-transforms of these components are given by

00 00

X(z j W Ix .(flT)Z-n I Lx~j+kN)Tj z(- +kN)

n=0 n=O (24)

and

N-1

X(z) = X.jz) (25)

j=0

Equation (25) may be considered as a column matrix representing every signal

x(t) in the system in terms of its skip-sampled components, i. e.,

XOlz)

{x(z.)} z) -

.xN_ lZ)(26)

The input-output relation for an arbitrary linear time-varying element

in the time domain can be expressed as follows (at the sampling instants only):

y(0) = h(0, 0) 0 0 x(0)

y(T) h(T, 0) h(T, T) 0 [x(T)]I.I
y(2T) = h(2T, 0) h(2T, T) h(2T, 2T) ... x(2T) (

L ..... L (27)

where h(t, r) is the weighting function for the system, x(t) the input and y(t)

ASD TDR 62-35 13



the output vectors respectively, and H = [h(nT, kT)] is the transmission

matrix of the system in the time domain. Now, since the skip-sampling is

periodic, occurring every N samples, we have

h(nT +N, kT +N) = h(nT, kT) (28)

The periodicity makes it possible to partition the transmission matrix into

(NxNI submatrices and the column vectors into (Nx 1) submatrices. Then,

Equation (27) is written as follows:

y(O) h(O) 0 ... x(O)

y(NT) h(NT) h(O) ... x(NT)

y(2NT) h(2NT) h(NT) ... x(2NT)

(29)

In terms of these submatrices, the input-output relation can also be written as

n

y(nNT) = h(nNT - kNT) x (kNT) (30)

k=O

which is the matrix equivalent of the ordinary convolution summation in the sta-

tionary case. By defining the z-transforms of the matrices of Equation (29),

and modifying them with the appropriate powers of z, one obtains the matrix

representation

{Y(z)} = [H(z)] {X(z)} (31)

where 11(z) is the transmission matrix in the frequency domain, or the "Trans-

fer matrix". For a non-time-varying system, since h(nT, kT) = h(nT-kT), the

transfer matrix becomes:

H 0(z) H N-i(Z) ... H1(Z)

H1(Z) H 0(z) ... H 2 (z)
11(z) --

HN-iz HN_(z) ... H0(z)

(32)

where H (z) is the pulse transfer function corresponding to the appropriate

ASD TDR 62-35 14



skip-sampled transmission matrix. If the component is time-varying but

has "zero-memory", then H(z) reduces to a diagonal matrix, A = diag [a(0),

a(T), a(2T) .... a [(N-l)T] ] . The construction of the matrices i etils

4trated by an example from Friedland's paper.

Consider the system of Figure 6, where the sampler closes for two

sampling instants and skips one sampling instant. Thus, N = 3. The skip-

H G

SKIP SAMPLERI S

II * . ii ,I I .IM
0 I 2 3 4 5 6 7 8 9

SKIP-SAMPLED SYSTEM AND SAMPLING PATTERN

FIGURE 6

sampling and hold can be represented by a separate matrix which takes into

account the fact that, in general, the length of the hold period will depend on

the sampling pattern. In this simple case, the hold is described by

-Ts
G (s)=1-e

GH(S = s (33)

for sampling instants 0, 3, 6,.... and by

-2Ts
1-e

for sampling instants 1, 4, 7,.... If the integration is combined with the plant
1

transfer functiori s' the hold can be represented by the matrix

1 -z 01

H(z) : -z 1 01

0 0 0(35)



so that
-1

G(z) = z(l-z-l)

and

G 0o(Z) G2(z) G 1 (z)

W(z) = G1(Z) G (Z) G2(z)I

G 2 (z) G1(Z) G0(z) (36)

where the Gi (z) are obtained by summing the respective skip-sampled compo-

nents 0, 1 and 2 of G(z) and are given by

-3 1 -4 2 5
3z z +2z 2z- +Z

(Z) (1-z )2 (i-z3) 2  2 (-z-3)2

(37)

The output of the system can be obtained by writing the overall transfer matrix

for the system.

K(z) (-I +H-(Z) (38)

where I is the unit matrix. The response is then evaluated from

C(z) - K(z)R(z) (39)
6

4. 1 Skipped-Sample Problems: Inversion by Long Division

A less elegant but conceptually very simple method of obtaining the output

of a skipped-sample system is based on the well known inversion of the output
-n

C(z) by long division to obtain a series in z . The coefficients of the series

are the values of the output time function c(nT) at the sampling instants.

Consider the representation of Figure 7, where the skip-sampler is re-

presented by a "negative sample generator", which cancels pulses at the

"missed" sampling instants. Then, the transform of the system error can be

written as

E(z) = R(z) + V(z)
1 + G(z) (40)

where V(z) is the transform of the "cancelling sampler" output, i. e.,
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V(z) e(nT)z-n (41)

n=k

where k represents the values of the sampling instant n at which samples are

omitted. If samples are omitted periodically, then k = Nn, where N repre-

sents the particular skipped sample; for example, N = 3 if every third sample

is skipped.

0)~ + M o t)PLNT6

REPRESENTATION OF SKIPPED-SAMPLE PROBLEM

FIGURE 7

Now Equation (40) could be used to obtain e(nT) by long division, if V(z)

were known analytically. If it is not known, the process can still be carried

out sample by sample. At each sampling instant where an error sample is

omitted, a term corresponding to V(z) is added to the numerator (or, more

conveniently, to the remainder); at all other sampling instants V(z) is zero

and therefore can be omitted entirely.

If a zero-order hold circuit is present, the procedure must be modified

since the output of the hold circuit is not zero following a "missing" sample,

but rather will be the same as that due to the last existing sample pulse.

This process can be represented by effectively sampling the last existing value

again, i. e., if the n-th sample is omitted, we let

v(nT) = -{e[(n-1)T] -e(nT)} (42)

Then

e(nT) = e(n- )T

and the sampler output is equal to the pulse applied at (n-l)T once again. The

hold output will then remain constant through the "missed pulse" period.
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Therefore, the function v*(t) can be represented as

v*(t) = Ij {e(nT) - e [(n-k n)T]} 6 (t -nT) (43)

n

where n represents the number of the missed samples and k the number ofn
intervals since the last existing sample. The application of this method will

be illustrated with a simple example. 6

Let the "plant" G(s) be of second order,

2
G(s) = 2

s(s+1) (44)

with no hold circuit used. Then

-1
G(z) = 1. 264 z (45)

(1-z- 1 ) (1-0. 368 z-1)

Let the input be a unit step applied at t = 0. Then

R(z) 1

1-z (46)

and the error transform is

E(z) = R(z)-V(z) =-z-I V4z)
1 W +G(z) 1+. 264z-1

(1-z-) (1-0. 368 z-1)

Equation (47) reduces to

E (Z) (z2 - 0.368 z) - V(z) (z-1)(z-0.368)
(z2 - 0. 104 z + 0. 368) (48)

Now, let the sampling pattern be such that every third sample is missed, as

shown in Figure 5. Then the first term in V(z) is e(2T)z-2 and V(z) can be

omitted for the computation of the first two samples, as shown below

I -0.264z-i

z 20. 104z + 0.368IZ2 -0. 368 z + f(z)V(z)
z2-0.104z +0.368

-0.264z -0.368
-0.264z +0.027-0.097z

- 0. 395 +0. 097 z-1
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Now, since there is no sample at the instant (2T), we add v(2T) to the remain-

der and continue. Starting from the last remainder, we add [-0. 395 z 2 (z-l)

(z-0. 368)] :

0z-2 - 0.443z-
3

z 0. 104z + 0.3681 0.395 +0.097z I
-0.395 + 0. 540 z-1 - 0. 146 z

- 0. 443 z-1+0. 146z- 2

- 0. 443 z- 1 +0. 046 z-2 - 0. 163 z-3

+0. 100z- 2 +0. 165z-3

Thus the first four terms of e(nT) are then:

e(0) = 1. 0, e(T) -0. 264, e(2T) = -0. 395, e(3T) = -0. 443

(49)

The output is then computed from the relation

c(nT) = r(nT) - e(nT) (50)

It should be noted that while this method does not give the output in

closed form directly, it is not limited to periodically skipped samples. The

missed samples can be designated by an arbitrary function of (nT) in advance,

or they can be computed as a function of system performance at the prcceding

intervals. Thus, for example, the sampler may be designed in such a manner

that it samples at the instant (n+l)T only if e(nT) > E, i. e., if the error ex-

ceeds certain limits. Similarly, the sampler operation may be governed by a

performance criterion such as the sum of a number of terms of the mean-

square error sequence. However, since the solution proceeds sample-by-

sample from t = 0, it is probably limited to the investigation of the first few

sampling intervals if it is not to become excessively time consuming.

5. THE STATE VARIABLE FORMULATION OF SAMPLING PROBLEMS

A formulation of sampled data problems using the concepts of state vari-

ables and state transition matrices has been presented by Kalman and Bertram.1 0

The method is primarily applicable to systems with periodic sampling (either

constant-rate, cyclically varying rate, or multi-rate systems), and has been
11

applied to the analysis of systems with random sampling. As with other
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methods, the generalization to arbitrary sampling periods makes the method

extremely laborious. In fact, Kalman and Bertram emphasize that their ap-

proach is designed for use with digital computers.

The formulation of the method begins by dividing the components of

linear sampled data systems into three groups: (a) continuous dynamic ele-

ments (characterized by linear differential equations); (b) discrete dynamic

elements (characterized by linear difference equations); and (c) sample-and-

hold elements which represent the transitioni from discrete to continuous

information.

The state of the continuous elements is represented by the (-y x 1) matrix

[xc(t)] where -' is the sum of the orders of the differential equations governing

these elements; the elements of [Xc(t)] are the values of the continuous quan-

tities x. and their derivatives at time t. The state of the discrete dynamic1

elements at time t is the set of numbers required at the start of a cycle of

computation to solve the particular set of difference equations. They are de-

noted by a 6-vector [ xd(t)] if there are 6 such numbers required.

The state of the sample and hold devices is denoted by a column matrix

whose elements are the values of the outputs of these devices at time t. This

is denoted by [ xsMt)] and is assumed to be of rank (ax 1).

The state of the entire system is then obtained by combining the three

state vectors into a single (nx 1) matrix which the authors call [x (t)], e.
SXc(t}

IX (t)} = xd(t)

XS(t) (51)

The transitions from sampling instant to sampling instant are then writ-

ten by considering the state transitions of each type of element to be a matrix

acting on the state variables.

The derivation of the transition matrices is beyond the scope of this re-

port, but the method will be illustrated with one of Kalman and Bertram's

examples. Consider the system of Figure 8, which includes discrete
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compensation as well as a continuous "plant".

Q(t) x,(kT) f(kT) x4 (kT) xp(t) x,(t)

~r(t) + DIS RET

COMPENSATION HOLD

ILLUSTRATIVE PROBLEM FROM KALMAN AND BERTRAM 1 0

FIGURE 8

The state variable vector for the continuous element is given by

[ 2t) d]t) (52)

If the discrete compensator is described by the difference equatior

f(tk) = a0e(tk) + ale(tk-I)-blf(tk-l) (53)

then a new variable X 3(tk) can be defined by

f(tk) =aoe(tk) + (al-a0bl)x3 (tkI)

x 3 (tk) e(tk) - blx 3 (tk_) (54)

Thus, the state of the element at time tk, given the input e(tk) is clearly

described by

[ xDtk)I = [ X3(tkl)1 
(55)

The state of the sample-and-hold element is simply its output, which, at the

sampling instants, equals its input:
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I X s(tk) I = [ Y4 (tk) I- [ f tk (56)

In the above equations, tk is the kth sampling instant after t = 0, and

Tk = (tk+1 - tk).

Now it can be shown that the state of the complete system at time tk+l

is described by the equation

{x (tk+l)} [ /(Tk)] {x (tk)} +[ v(Tk) r(tk) (57)

where

{x (t k+)} is the state vector at time tk+1

[ O(Tk)] is the system transition equation from instant tk to instant

tk+1

r(tk) is the input at time tk (a scalar)

[ v(Tk)] is a vector including the effect of the input on the state

transition.

For the particular system of this example, the transition matrix is given

by:

Tk (1k-T -Tk) (1
1 aO(T k-1+ ek lekk1 1 0 b 1)

+-Tk I-TkI
-a01ee (1-e) (a 1 -aob1 ) 0

k I
-1 0 -b1  0

------------------ -------------------------1
-a 0  0 ] a -0b 1 0

(58)

and aO(Tk-1+eTk

ao1( eTk-

a0- k)l------------------

a0  (59)
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The top two rows of the matrices in Equations (58) and (59) govern the state.

transitions of the continuous elements; the third row concerns the discrete

compensator and the fourth row the zero-order hold.

While the formulation of the equations in matrix form is very elegant,

it should be noted that Equation (57) is merely a concise statement of the

difference equation method outlined in a previous section of this report. The

matrix formulation has particular appeal in the stationary case. Even in the

periodically varying sampling rate case, when the problem is stated in terms

of difference equations with periodic coefficients, the "transition matrix" be-

comes stationary if attention is focused on the transition corresponding to a

complete period of sampling operations.

6. OTHER METHODS

6. 1 Continuous Approximations

If the sampling frequency w is sufficiently high compared to the band-

pass of the plant G~jw), then the sample-and-hold operation can be approxi-

mated with one or two terms of its frequency domain representation. A zero-

order hold is described by

T-j'0½ sinw T/2
n(jw) = We_(T iw/

TwT2 (60)

Therefore, the pulse transfer function of a sampler followed by a zero-order-

hold and plant G(w) is given by

1+0• -jTlw+nws)/2 sin (w +nws)T/2

HG*w) =Te G(jw +j n )
T I (w +nws)T/2

n=-oo (61)
sinwT/2

Since for low frequencies 7T/2 - 1 and the higher harmonics are assumed

negligible, this transfer function reduces to

HG*O(jw) I -jwT/2GOO (62)

This approximation is the foundation of the most common approximation meth-
od.2 1ivl2, 13

ods. 2Linvill 1 has suggested the extension of the approximation by using
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one or two of the additional sidebands due to sampling. Clearly, the diffi-

culty with applying this type of approximation to the variable sampling rate

problem is that one obtains, at the very least, continuous control systems

with variable time delays. The solution of problems of this type is also at

best approximate. Other continuous design methods 716 suffer from similar

limitations. Rubtsov17 has presented a careful analysis of the validity of

some of the approximation methods.

6. 2 Slowly-Varying Sampling Rate Systems

If the sampling rate varies slowly in comparison to the dominant sys-

tem time constants, other approaches are possible. (The concept of "slow

variation" can be related to the change in the sampling rate during the time

required for the impulse response of the system to decay below a specified
18

value. ) Tartakovskii has applied the methods used by Zadeh for the study

of stability of time varying linear equations to the stability of difference equa-

tions with varying coefficients. This method makes it possible to apply z-trans-

form techniques to obtain approyimate stability conditions for slowly varying

systems.

If the sampling rate varies slowly it may also be considered piecewise

conetant. Ordinary z-transforms can be used for the solution during a con-

stant-rate period, and the difference equations of the system solved step-by-

step at transitions of sampling frequency to establish initial conditions. 6

7. SUMMARY AND CONCLUSION

This report has presented a survey of methods presently available for

the analysis of sampled data systems with a variable sampling rate. A num-

ber of exact methods can be used for systems where the sampling rate varies

periodically, since the inherent periodicity makes the use of z-transforms

possible.

The general time-dependent sampling interval problem can be solved

by writing the state transition equations of the system from interval to interval.

These equations can be expressed in concise form using matrices, but

ASD TDR 62-35 24



except in extremely simple cases, they are too complex and time consuming

for solution except with a digital computer. A number of the methods pre-

sented are practical for evaluation of system response during the first few

sampling instants, even if the sampling intervals are given by arbitrary func-

tions of time.

When the sampling rate is dependent on system performance the prob-

lem becomes nonlinear. Recursion equations for solution of the nonlinear

difference equations can still be written and the above remarks apply. Most

of the other methods surveyed in this report cannot be extended directly to

the nonlinear case.

While stability evaluation was not discussed in the report, Kalman and

Bertram10 indicate the extension of stability criteria from constant-rate to

periodically varying sampling rate systems. No general results appear to

be available for the arbitrary variable-rate sampled-data system.
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